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ABSTRACT. We obtain L2 × L2 → L1 boundedness for bilinear maximal
functions associated with general compact hypersurfaces. Our method is
based on the strategy introduced in [2] and a new multiplier result estab-
lished in [7].

The spherical maximal function

M( f )(x) := sup
t>0

∫
Sn−1

f (x− ty)dσ(y)

was introduced by Stein [13], who proved the Lp-boundedness of this operator
in the sharp range of exponents when n ≥ 3. One decade later, Bourgain [1]
extended this result to the case when n = 2 using geometric techniques involv-
ing intersection of circles. Much work has focused on this operator and its
generalization to more general surfaces; see, for instance, [14], [8], [4], [12].

The (sub)bilinear analogue of the spherical maximal operator was intro-
duced in [3], and the study of its L2×L2→ L1 boundedness was initiated in
[2], where it was shown for n ≥ 8. The dimension restriction was lowered to
n≥ 4 in [6], as an application of a more general result for bilinear multipliers
with limited decay. In this note we extend the aforementioned results to more
general surfaces by making use of the strategy employed in [2] and of a new
sharp criterion for the (2,2,1) boundedness of bilinear multipliers obtained in
[7].

Let S be a (2n− 1)-dimensional compact smooth surface in R2n without
boundary such that k of the 2n−1 principal curvatures of S are different from
zero, and let µ be a smooth measure supported on it. For instance µ could be
the canonical normalized surface measure on S. The bilinear maximal function
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associated with the surface S and the measure µ is defined by

MS( f ,g)(x) = sup
t>0

∣∣∣∫
S

f (x− ty)g(x− tz)dµ(y,z)
∣∣∣.

An important property of µ that will be needed is as follows.

Lemma 1 ([11]). Let S and µ be as described above, then all derivatives of
the Fourier transform of µ satisfy the estimate

|∂ α(µ̂)(ξ )| ≤Cα(1+ |ξ |)−k/2.

The main result of this note is as follows:

Theorem 2. The bilinear maximal operatorMS associated with S is bounded
from L2(Rn)×L2(Rn) to L1(Rn) whenever k > n+2.

As the decay of the Fourier transform of (2n−1)-dimensional surface mea-
sure is (1+ |ξ |)− 2n−1

2 we deduce as a corollary that the bilinear spherical max-
imal function is bounded from L2(Rn)×L2(Rn) to L1(Rn) whenever n ≥ 4.
Recently it was shown in [10] that the bilinear spherical maximal function is
bounded in the sharp range of exponents for all n≥ 2; the key idea of the proof
is a change of variables which exploits the symmetry of the sphere (see [9, p.
136] and [2, Lemma 9]); unfortunately this idea is not applicable in the gen-
eral case studied here. So the main contribution of this note is the extension
of this result to general surfaces where symmetry does not appear. We work
with surfaces with k nonzero principal curvatures and our approach requires
the restriction k > n+2.

Our main result is Theorem 2 which covers the situation where k principal
curvatures of the surface are nonzero. Such examples of surfaces include the
products Sk× [0,1]2n−k−1.

1. SOME PRELIMINARIES

We recall some notation and the strategy in [2]. Let ϕ be a nonnegative
smooth function supported in the unit annulus such that ∑ j∈Zϕ(2− j(ξ ,η)) =

1, and define m j(ξ ,η) = d̂µ(ξ ,η)ϕ(2− j(ξ ,η)). Associated with m j, we de-
fine

M j( f ,g)(x) = sup
t>0

∣∣∣∫
R2n

f̂ (ξ )ĝ(η)m j(tξ , tη)e2πix·(ξ+η)dξ dη

∣∣∣.
ObviouslyM≤ ∑ jM j.

Concerning the boundedness ofM j when S is the unit sphere S2n−1 and µ

is the normalized measure on S2n−1, we have the following result proved in
[2].
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Proposition 3 ([2, Proposition 4]). Let n ≥ 8. Then there exists a positive
constant C such that for all j ≥ 1 and all functions f ,g ∈ L2(Rn) we have

(1) ‖M j( f ,g)‖L1 ≤C j 2−δn j‖ f‖L2‖g‖L2,

where δn =
n
5 −

3
2 .

In particular,M is bounded from L2(Rn)×L2(Rn) to L1(Rn) when n ≥ 8.
To improve this result, we need to improve the exponent δn in (1).

In the proof of Proposition 3 in [2], we decompose m j into diagonal and off-
diagonal parts. To describe this decomposition, we take ρ ∈ S(R) satisfying
χ[ε−1,1−ε] ≤ ρ ≤ χ[−1,1] and define m1

j(ξ ,η) = m j(ξ ,η)ρ(1
j (log2

|ξ |
|η |)), then

we obtain the decomposition m j = m1
j +m2

j , where m1
j is called the diagonal

part, and m2
j is called the off-diagonal part. The off-diagonal part is handled

by a standard square function argument, and the estimate of the diagonal part
is obtained as a consequence of [5, Corollary 8].

In [7] we improved [5, Corollary 8] to the following sharp version which
will in turn lead to an improvement of Proposition 3.

Proposition 4 ([7, Theorem 1.3.]). Suppose that m(ξ ,η) is a function in
Lq(R2n) with 1 < q < 4 such that m ∈ CMq with Mq =

[
2n

4−q

]
+1, and

‖∂ αm‖L∞ ≤C0 < ∞ for all α with |α| ≤Mq.

Then there is a constant C depending on n and q such that the bilinear operator
Tm with multiplier m satisfies

(2) ‖Tm‖L2×L2→L1 ≤CC
1−q

4
0 ‖m‖

q
4
Lq.

A key step towards lowering the dimension restriction in Proposition 3 is
the following lemma.

Lemma 5. Suppose that σ1(ξ ,η) is defined on R2n and for some δ > 0 it
satisfies:

(i) supp σ1 ⊂ {(ξ ,η) ∈ R2n : |(ξ ,η)| ∼ 2 j,c12− j ≤ |ξ ||η | ≤ c22 j} for some
j ∈ N,

(ii) for any multiindex |α| ≤ M = 4n, there exists a positive constant Cα

independent of j such that ‖∂ α(σ1(ξ ,η))‖L∞ ≤Cα2− jδ .
Then T ( f ,g)(x) :=

∫
∞

0 |Tσt ( f ,g)(x)|dt
t is bounded from L2(Rn)×L2(Rn) to

L1(Rn) with bound at most a multiple of j‖σ1‖
1/2
L2 2− jδ/2, where σt(ξ ,η) =

σ1(tξ , tη).

Let us sketch the proof to see how Proposition 4 plays a role, while an
interested reader may find more related details in [2].
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Proof. Using Proposition 4 with q= 2, setting f̂ j = f̂ χ{c1≤|ξ |≤c22 j+1}, we have
that

‖Tσ1( f ,g)‖L1 ≤C‖σ1‖
1/2
L2 2− jδ/2‖ f j‖L2‖g j‖L2 .

Notice that Tσt ( f ,g)(x) = t−2nTσ1( ft ,gt)(
x
t ), where f̂t(ξ ) = f̂ (ξ/t). Then

‖Tσt ( f ,g)‖L1 ≤ C‖σ1‖
1/2
L2 2− jδ/2‖ f̂ χE j,t‖L2‖ĝ χE j,t‖L2 ,

where E j,t = {ξ ∈ Rn : c1
t ≤ |ξ | ≤

2 jc2
t }. This combined with the Hölder

inequality implies that∫
Rn

∫
∞

0
|Tσt ( f ,g)|dt

t
dx

≤C‖σ1‖
1/2
L2 2− jδ/2

(∫
∞

0

∫
Rn
| f̂ χE j,t |

2dξ
dt
t

) 1
2
(∫

∞

0

∫
Rn
|ĝ χE j,t |

2dξ
dt
t

) 1
2

≤C j‖σ1‖
1/2
L2 2− jδ/2‖ f‖L2‖g‖L2,

where in the last step we use the estimate∫
∞

0

∫
Rn
| f̂ χE j,t |

2dξ
dt
t
≤C j‖ f‖2

L2 .

This completes the proof. �

2. THE PROOF OF THE MAIN RESULT

We prove Theorem 2 in this section.
For

M1
j( f ,g)(x) := sup

t>0

∣∣∣∫
R2n

f̂ (ξ )ĝ(η)m1
j(tξ , tη)e2πix·(ξ+η)dξ dη

∣∣∣
we have the control

M1
j( f ,g)(x)≤

∫
∞

0
|T̃ 1

j,s( f ,g)(x)|ds
s
,

where

T̃ 1
j,s( f ,g)(x) =

∫
R2n

f̂ (ξ )ĝ(η)m̃1
j(sξ ,sη)e2πix·(ξ+η)dξ dη

with m̃1
j(ξ ,η)= (ξ ,η) ·(∇m1

j)(ξ ,η). An argument in [2, Section 4] combined
with Lemma 1 implies that |∂ αm̃1

j | ≤C2− j(k−2)/2 for all α and that ‖m̃1
j‖L2 ≤

C2−
k−2n−2

2 j. Applying Lemma 5 with m̃1
j = σ1, we obtain that

‖M1
j‖L2×L2→L1 ≤ j2− j k−n−2

2 .
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It follows from [2, Lemma 6] that the the off-diagonal part satisfies the
estimate

‖M2
j( f ,g)‖L1 ≤C2− j(k−1

2 −ε)‖ f‖L2‖g‖L2,

whereM2
j is the maximal operator associated with the bilinear multiplier m2

j ,
and ε is the parameter used in the decomposition of m j which could be arbi-
trarily small.

We therefore have (1) with δn = k−n−2
2 this time. This implies that the

(2,2,1) boundedness ofMS holds when δn > 0, i.e., when k > n+2.

3. FINAL REMARKS

Theorem 2 is the first result concerning maximal bilinear spherical averages
over general surfaces. In this work we focused on the natural initial point of
boundedness L2× L2 → L1. This condition k > n+ 2 fails to be sharp and
furthermore cannot hold in low dimensions as k ≤ 2n− 1. In fact, in low
dimensions, unboundedness holds. For instance, we recall the following one-
dimensional example.

Proposition 6 ([2, Proposition 7]). When S = S1, the bilinear spherical maxi-
mal operatorMS is unbounded from L2(R)×L2(R) to L1(R).

We are also aware of other surfaces S with k nonzero principal curvatures
such thatMS is unbounded on L2×L2→ L1 when k ≤ 2n− 2 is sufficiently
small.

Questions related to this work include the extension of Theorem 2 to general
Lebesgue spaces. In this case one should not expect the range of indices to be
symmetric as the non symmetric example S = {(r,r2) : 0 ≤ r ≤ 1} indicates.
Additionally, we hope to address the extension of Theorem 2 to the variable
coefficient case.
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